Title | Mice lacking the immediate early gene Egr3 respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects. |
Publication Type | Journal Article |
Year of Publication | 2008 |
Authors | Gallitano-Mendel A, Wozniak DF, Pehek EA, Milbrandt J |
Journal | Neuropsychopharmacology |
Volume | 33 |
Issue | 6 |
Pagination | 1266-75 |
Date Published | 2008 May |
ISSN | 0893-133X |
Keywords | Aggression, Analysis of Variance, Animals, Antipsychotic Agents, Behavior, Animal, Brain Chemistry, Chromatography, High Pressure Liquid, Clozapine, Dopamine, Dose-Response Relationship, Drug, Early Growth Response Protein 3, Mice, Mice, Inbred C57BL, Mice, Knockout, Motor Activity, Reaction Time, Serotonin |
Abstract | Immediate early genes (IEGs) of the early growth response gene (Egr) family are activated in the brain in response to stress, social stimuli, and administration of psycho-active medications. However, little is known about the role of these genes in the biological or behavioral response to these stimuli. Here we show that mice lacking the IEG transcription factor Egr3 (Egr3-/- mice) display increased aggression, and a decreased latency to attack, in response to the stressful social stimulus of a foreign intruder. Together with our findings of persistent and intrusive olfactory-mediated social investigation of conspecifics, these results suggest increased impulsivity in Egr3-/- mice. We also show that the aggression of Egr3-/- mice is significantly inhibited with chronic administration of the antipsychotic medication clozapine. Despite their sensitivity to this therapeutic effect of clozapine, Egr3-/- mice display a marked resistance to the sedating effects of acute clozapine compared with WT littermate controls. This indicates that the therapeutic, anti-aggressive action of clozapine is separable from its sedating activity, and that the biological abnormality resulting from loss of Egr3 distinguishes these different mechanisms. Thus Egr3-/- mice may provide an important tool for elucidating the mechanism of action of clozapine, as well as for understanding the biology underlying aggressive behavior. Notably, schizophrenia patients display a similar decreased susceptibility to the side effects of antipsychotic medications compared to non-psychiatric controls, despite the medications producing a therapeutic response. This suggests the possibility that Egr3-/- mice may provide insight into the neurobiological abnormalities underlying schizophrenia. |
DOI | 10.1038/sj.npp.1301505 |
Alternate Journal | Neuropsychopharmacology |
PubMed ID | 17637609 |
PubMed Central ID | PMC4621766 |
Grant List | R29 MH052220 / MH / NIMH NIH HHS / United States P30 NS057105 / NS / NINDS NIH HHS / United States R01 NS040745 / NS / NINDS NIH HHS / United States R01 MH052220 / MH / NIMH NIH HHS / United States T32AA07580 / AA / NIAAA NIH HHS / United States NS057105 / NS / NINDS NIH HHS / United States T32 AA007580 / AA / NIAAA NIH HHS / United States R01NS040745 / NS / NINDS NIH HHS / United States MH52220 / MH / NIMH NIH HHS / United States |